Part Number Hot Search : 
AN0003 2SC1815 TB1100H VFT1080S BT8E5 BC858B AU9226 DME500
Product Description
Full Text Search
 

To Download IRL3103 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRL3103 hexfet ? power mosfet 3/16/01 parameter typ. max. units r q jc junction-to-case CCC 1.6 r q cs case-to-sink, flat, greased surface 0.50 CCC c/w r q ja junction-to-ambient CCC 62 thermal resistance www.irf.com 1 v dss = 30v r ds(on) = 12m w i d = 64a s d g to-220ab advanced hexfet ? power mosfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. description pd - 91337 absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 64 i d @ t c = 100c continuous drain current, v gs @ 10v 45 a i dm pulsed drain current ? 220 p d @t c = 25c power dissipation 94 w linear derating factor 0.63 w/c v gs gate-to-source voltage 16 v i ar avalanche current ? 34 a e ar repetitive avalanche energy ? 22 mj dv/dt peak diode recovery dv/dt ? 5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbf?in (1.1n?m) l advanced process technology l ultra low on-resistance l dynamic dv/dt rating l 175c operating temperature l fast switching l fully avalanche rated
IRL3103 2 www.irf.com s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.2 v t j = 25c, i s = 34a, v gs = 0v ? t rr reverse recovery time CCC 57 86 ns t j = 25c, i f = 34a q rr reverse recovery charge CCC 110 170 nc di/dt = 100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 64 220 a ? starting t j = 25c, l = 220h r g = 25 w , i as = 34a, v gs =10v (see figure 12) ? repetitive rating; pulse width limited by max. junction temperature. (see fig. 11) notes: ? i sd 34a, di/dt 120a/s, v dd v (br)dss , t j 175c ? pulse width 400s; duty cycle 2%. ? this is a typical value at device destruction and represents operation outside rated limits. ? this is a calculated value limited to t j = 175c . parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 30 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.028 CCC v/c reference to 25c, i d = 1ma CCC CCC 12 v gs = 10v, i d = 34a ? CCC CCC 16 v gs = 4.5v, i d = 28a ? v gs(th) gate threshold voltage 1.0 CCC CCC v v ds = v gs , i d = 250a g fs forward transconductance 22 CCC CCC s v ds = 25v, i d = 34a ? CCC CCC 25 a v ds = 30v, v gs = 0v CCC CCC 250 v ds = 24v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 16v gate-to-source reverse leakage CCC CCC -100 na v gs = -16v q g total gate charge CCC CCC 33 i d = 34a q gs gate-to-source charge CCC CCC 5.9 nc v ds = 24v q gd gate-to-drain ("miller") charge CCC CCC 17 v gs = 4.5v, see fig. 6 and 13 t d(on) turn-on delay time CCC 8.9 CCC v dd = 15v t r rise time CCC 120 CCC i d = 34a t d(off) turn-off delay time CCC 14 CCC r g = 1.8 w t f fall time CCC 9.1 CCC v gs = 4.5v, see fig. 10 ? between lead, 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 1650 CCC v gs = 0v c oss output capacitance CCC 650 CCC v ds = 25v c rss reverse transfer capacitance CCC 110 CCC pf ? = 1.0mhz, see fig. 5 e as single pulse avalanche energy ? CCC 1320 ? 130 ? mj i as = 34a, l = 0.22mh s d g electrical characteristics @ t j = 25c (unless otherwise specified) r ds(on) static drain-to-source on-resistance i gss nh l s internal source inductance CCC 7.5 CCC l d internal drain inductance CCC 4.5 CCC i dss drain-to-source leakage current m w
IRL3103 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 20 s pulse width t = 25 c j top bottom vgs 15v 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 2.7v 1 10 100 1000 0.1 1 10 100 20 s pulse width t = 175 c j top bottom vgs 15v 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 2.7v 1 10 100 1000 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v = 15v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 56a
IRL3103 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 500 1000 1500 2000 2500 3000 v , drain-to-source volta g e (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss g s g d , ds rss g d oss ds g d c iss c oss c rss 0 10 20 30 40 0 3 6 9 12 15 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 34a v = 15v ds v = 24v ds 0.1 1 10 100 1000 0.0 0.4 0.8 1.2 1.6 2.0 2.4 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 v ds , drain-tosource voltage (v) 1 10 100 1000 i d , drain-to-source current (a) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
IRL3103 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 10 20 30 40 50 60 70 t , case temperature ( c) i , drain current (a) c d v ds 90% 10% v gs t d(on) t r t d(off) t f v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. v gs + - v dd fig 10a. switching time test circuit fig 10b. switching time waveforms
IRL3103 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - v gs fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current 25 50 75 100 125 150 175 0 40 80 120 160 200 240 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 14a 24a 34a r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v v gs
IRL3103 www.irf.com 7 peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd dv/dt controlled by r g i sd controlled by duty factor "d" d.u.t. - device under test d.u.t * circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * reverse polarity of d.u.t for p-channel v gs [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** fig 14. for n-channel hexfet ? power mosfets
IRL3103 8 www.irf.com lead assignments 1 - gate 2 - drain 3 - sou rc e 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) m in 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 d im e n s io n in g & to l e r a n c ing p e r a n s i y 1 4.5m , 1 9 82. 3 o u t lin e c o n f o r m s to je d e c o u t lin e to -2 20 a b . 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. part marking information to-220ab package outline to-220ab dimensions are shown in millimeters (inches) part number international rectifier lo g o example : this is an irf1010 w it h as se m b ly lo t c o de 9b1m assembly lo t co de date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 3/01


▲Up To Search▲   

 
Price & Availability of IRL3103

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X